metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pentaaqua(isocyanurato)iron(II) isocyanurate dihydrate

Mao-Sheng Liu, Zheng-Yuan Zhou, Li-Cai Zhu, Xiu-Xia Zhou and Yue-Peng Cai*

School of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China Correspondence e-mail: ypcai8@yahoo.com

Received 13 July 2007; accepted 14 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (N–C) = 0.003 Å; R factor = 0.037; wR factor = 0.113; data-to-parameter ratio = 12.8.

In the title compound, $[Fe(C_3H_2N_3O_3)(H_2O)_5](C_3H_2N_3O_3)-2H_2O$, the Fe^{II} atom exhibits an FeNO₅ octahedral coordination geometry arising from one N-bonded 1,3,5-triazinanyl-2,4,6-trione molecule and five O atoms of water molecules. The uncoordinated 1,3,5-triazinanyl-2,4,6-trione anion and uncoordinated water molecules interact with the cation through $O-H\cdots O$, $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds, generating a three-dimensional network.

Related literature

For general background, see: Cai *et al.* (2001). For related structures, see: Cai *et al.* (2003). For related literature, see: Cai, *et al.* (2005).

Experimental

Crystal data

 $[Fe(C_3H_2N_3O_3)(H_2O)_5]-(C_3H_2N_3O_3)\cdot 2H_2O$ $M_r = 438.11$ $Monoclinic, P2_1/n$ a = 14.0563 (2) Åb = 6.6947 (1) Åc = 17.2336 (3) Å

Data collection

Bruker APEX CCD area-detector diffractometer

 $\begin{aligned} \beta &= 97.408 \ (1)^{\circ} \\ V &= 1608.19 \ (4) \ \text{\AA}^3 \\ Z &= 4 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu &= 1.02 \ \text{mm}^{-1} \\ T &= 298 \ (2) \ \text{K} \\ 0.20 \ \times \ 0.17 \ \times \ 0.15 \ \text{mm} \end{aligned}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.822, T_{max} = 0.862$ 14409 measured reflections3691 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.113$ S = 1.073691 reflections 289 parameters 25 restraints 3064 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.36~\text{e}~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.45~\text{e}~\text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7B\cdots O4^{i}$	0.839 (10)	1.958 (10)	2.795 (2)	175 (3)
$O7 - H7A \cdots O2W^{ii}$	0.841 (9)	1.905 (11)	2.736 (2)	170 (3)
O8−H8A···O3	0.827 (9)	2.294 (19)	2.904 (2)	131 (2)
$O8-H8A\cdots O2^{iii}$	0.827 (9)	2.47 (2)	3.147 (2)	140 (2)
$O8-H8B\cdots O2W^{iv}$	0.829 (10)	1.962 (11)	2.788 (2)	174 (3)
$O9 - H9B \cdots O1W^{v}$	0.833 (10)	1.946 (14)	2.743 (2)	160 (2)
$O9-H9A\cdots N5^{iii}$	0.843 (10)	2.018 (11)	2.858 (2)	174 (3)
$O10-H10A\cdots N5^{i}$	0.842 (10)	2.058 (11)	2.895 (2)	172 (2)
$O10-H10B\cdots O1W^{vi}$	0.841 (9)	1.927 (13)	2.743 (2)	163 (2)
$O11-H11A\cdots O5^{vi}$	0.835 (10)	2.079 (19)	2.828(2)	149 (3)
$O11 - H11B \cdot \cdot \cdot O2^{vii}$	0.835 (10)	1.949 (14)	2.761 (2)	164 (3)
$O1W-H1WB\cdots O10^{i}$	0.838 (9)	2.179 (17)	2.926 (2)	148 (3)
$O1W - H1WB \cdot \cdot \cdot O9^{i}$	0.838 (9)	2.54 (3)	3.075 (3)	123 (3)
$O1W-H1WB\cdots O1^{i}$	0.838 (9)	2.60 (2)	3.142 (2)	124 (2)
$O1W - H1WA \cdots O6^{viii}$	0.837 (10)	1.916 (12)	2.736 (2)	166 (3)
$O2W - H2WA \cdots O6$	0.844 (10)	1.892 (10)	2.734 (2)	176 (3)
$O2W - H2WB \cdots O7$	0.849 (10)	2.053 (13)	2.859 (2)	158 (3)
N3-H3···O4	0.851 (10)	1.947 (11)	2.790 (2)	170 (3)
N4-H4···O3	0.853 (10)	1.979 (11)	2.829 (2)	174 (3)
$N6-H6\cdotsO1^{ix}$	0.860 (10)	1.979 (11)	2.834 (2)	173 (3)

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (ii) -x, -y + 1, -z + 1; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (iv) -x, -y, -z + 1; (v) x - 1, y - 1, z; (vi) x - 1, y, z; (vii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (viii) -x + 1, -y + 1, -z + 1; (ix) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The work was supported by the National Natural Science Foundation of China and the NSF of Guangdong Province, China (grant No. 06025033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2093).

References

- Bruker (1998). *SMART* (Version 5.0) and *SHELXTL* (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, Y.-P., Chen, C.-L., Zhang, L., Shi, J.-L., Xu, A.-W., Su, C.-Y. & Kang, B.-S. (2003). *Inorg. Chim. Acta*, 342, 107–113.
- Cai, Y.-P., Li, G.-B., Zhan, Q.-G., Sun, F., Zhang, J.-G., Gao, S. & Xu, A.-W. (2005). J. Solid State Chem. 178, 3729–3734.
- Cai, Y.-P., Zhang, H.-X., Xu, A.-W., Su, C.-Y., Chen, C.-L., Liu, H.-Q., Zhang, L. & Kang, B.-S. (2001). J. Chem. Soc. Dalton Trans. pp. 2429–2434.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2578 [doi:10.1107/S1600536807045060]

Pentaaqua(isocyanurato)iron(II) isocyanurate dihydrate

M.-S. Liu, Z.-Y. Zhou, L.-C. Zhu, X.-X. Zhou and Y.-P. Cai

Comment

Recently we reported a series of one-dimensional helical Ag(I) compounds containing 8-hydroxyquinoline coordinating groups (Cai *et al.*, 2001 and 2003). As a part of the structural studies of the compounds involving the oxygen-nitrogen chelating ligand (Cai *et al.*, 2005), here we report the synthesis and structure of the compound, pentaaqua(1,3,5-triazinanyl-2,4,6-trione)iron(II) 1,3,5-triazinanate-2,4,6-trione dihydrate, namely $[Fe(C_3H_2N_3O_3)(H_2O)_5]^+(C_3H_2N_3O_3)^- 2H_2O$ (Scheme 1).

Fig.1 shows that the molecule of $[Fe(C_3H_2N_3O_3)(H_2O)_5]^+(C_3H_2N_3O_3)^- 2H_2O$ consists of one cation $[Fe(C_3H_2N_3O_3)(H_2O)_5]^+$, one anion $(C_3H_2N_3O_3)^-$ and two water molecules. The Fe^{II} atom exhibits a FeNO₅ octahedral coordination geometry arising from one N-bonded 1,3,5-triazinanyl-2,4,6-trione molecule and five O atoms of water molecules. The uncoordinated 1,3,5-triazinanyl-2,4,6-trione anion and uncoordinated water molecules interact with the cation through O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1), generating a three-dimensional network.

Experimental

A solution of FeCl₂ (200 mg, 1.00 mmol) in CH₃OH (20 ml) was slowly added to a solution of 1,3,5-triazinane-2,4,6-trione (260 mg, 1.95 mmol) in CH₃OH (10 ml). The resultant pale green solution was stirred under N₂ for 2 h at 323 K and then filtered. After addition of diethyl ether (20 ml), the filtrate was cooled to 253 K. Microcrystalline material was collected after 24 h and dried under vacuum (yield: 237 mg, 53%). Green blocks suitable for X-ray diffraction were obtained in 2 d by slow diffusion of diethyl ether into a dilute solution of the title complex in methanol. The assigned structure was substantiated by elemental analysis; calculated for C₆H₁₈N₆FeO₁₃: C 16.47, H 4.12, N 19.21%; found: C 16.43, H 4.18, N 19.17%.

Refinement

The structure was solved using direct methods followed by Fourier synthesis. Non-H atoms were refined anisotropically. The water/nitrogen H atoms were located and isotropically refined, with the O—H/N—H and H…H for water molecules distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. All other H atoms were placed in calculated positions (C—H = 0.93 or 0.97 Å), and were included in the refinement using the riding-model approximation. U_{iso} values were set equal to 1.5Ueq(parent atom) for water/nitrogen H atoms and to 1.2Ueq(parent atom) for all other H atoms.

Figures

Fig. 1. The structure of title molecule, with its atom-numbering scheme, is shown at the 50% probability level.

Pentaaqua(isocyanurato)iron(II) isocyanurate dihydrate

Crystal data

[Fe(C₃H₂N₃O₃)(H₂O)₅](C₃H₂N₃O₃)·2H₂O $F_{000} = 904$ $M_r = 438.11$ $D_{\rm x} = 1.809 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 4778 reflections *a* = 14.0563 (2) Å $\theta = 2.4 - 27.4^{\circ}$ b = 6.6947 (1) Å $\mu = 1.02 \text{ mm}^{-1}$ c = 17.2336(3) Å T = 298 (2) K $\beta = 97.408 \ (1)^{\circ}$ Block, green V = 1608.19 (4) Å³ $0.20\times0.17\times0.15~mm$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	3691 independent reflections
Radiation source: fine-focus sealed tube	3064 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 17$
$T_{\min} = 0.822, \ T_{\max} = 0.862$	$k = -8 \rightarrow 6$
14409 measured reflections	<i>l</i> = −22→22

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_0^2) + (0.062P)^2 + 0.9167P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$
3691 reflections	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
289 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
25 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based

on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe1	-0.05822 (2)	0.17964 (5)	0.678490 (17)	0.02687 (13)
01	-0.01859 (11)	0.1853 (3)	0.87539 (9)	0.0296 (4)
O2	0.30290 (12)	0.2819 (3)	0.93035 (10)	0.0421 (5)
03	0.17061 (11)	0.1783 (3)	0.68074 (9)	0.0327 (4)
O4	0.41363 (11)	0.1655 (3)	0.75242 (8)	0.0289 (4)
O5	0.60977 (11)	0.2088 (3)	0.56299 (10)	0.0377 (4)
O6	0.28965 (12)	0.2944 (3)	0.50276 (10)	0.0433 (5)
O7	-0.00205 (11)	0.4449 (3)	0.62062 (9)	0.0302 (4)
H7B	0.0276 (17)	0.510 (3)	0.6578 (11)	0.045*
H7A	-0.0367 (17)	0.512 (3)	0.5867 (11)	0.045*
O8	0.00260 (12)	-0.0127 (3)	0.59652 (10)	0.0372 (4)
H8A	0.0619 (7)	-0.014 (4)	0.6028 (18)	0.056*
H8B	-0.0266 (16)	-0.107 (3)	0.5730 (18)	0.056*
O9	-0.13082 (12)	-0.0603 (3)	0.72935 (10)	0.0329 (4)
H9B	-0.1713 (16)	-0.122 (4)	0.6988 (13)	0.049*
H9A	-0.0971 (17)	-0.129 (3)	0.7635 (13)	0.049*
O10	-0.13586 (11)	0.3992 (3)	0.74129 (9)	0.0284 (3)
H10A	-0.0988 (15)	0.472 (3)	0.7713 (13)	0.043*
H10B	-0.1783 (14)	0.459 (3)	0.7112 (13)	0.043*
O11	-0.18778 (12)	0.1871 (3)	0.59092 (10)	0.0404 (5)
H11A	-0.2439 (11)	0.197 (5)	0.6014 (16)	0.061*
H11B	-0.179 (2)	0.201 (5)	0.5442 (8)	0.061*
O1W	0.74356 (12)	0.6644 (3)	0.65640 (9)	0.0329 (4)
H1WB	0.6986 (14)	0.692 (5)	0.6821 (12)	0.049*
H1WA	0.7299 (18)	0.657 (5)	0.6077 (6)	0.049*
O2W	0.09420 (12)	0.3139 (3)	0.49336 (10)	0.0339 (4)
H2WA	0.1543 (8)	0.301 (5)	0.4958 (15)	0.051*
H2WB	0.0736 (17)	0.326 (5)	0.5373 (10)	0.051*
N1	0.06881 (12)	0.1824 (3)	0.77285 (10)	0.0205 (4)
N2	0.14088 (12)	0.2369 (3)	0.90343 (10)	0.0247 (4)
H2	0.1357 (19)	0.244 (4)	0.9520 (7)	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

N3	0.23620 (13)	0.2187 (3)	0.80582 (11)	0.0286 (4)
H3	0.2910 (11)	0.217 (4)	0.7898 (16)	0.034*
N4	0.35144 (13)	0.2299 (3)	0.62800 (10)	0.0246 (4)
H4	0.2955 (10)	0.223 (4)	0.6421 (15)	0.029*
N5	0.51845 (12)	0.1830 (3)	0.66238 (10)	0.0232 (4)
N6	0.45021 (13)	0.2501 (3)	0.53267 (10)	0.0274 (4)
Н6	0.4638 (19)	0.262 (4)	0.4856 (8)	0.033*
C1	0.05928 (15)	0.2003 (3)	0.85001 (12)	0.0207 (4)
C2	0.23144 (15)	0.2485 (4)	0.88340 (12)	0.0264 (5)
C3	0.15702 (15)	0.1924 (3)	0.75000 (12)	0.0220 (4)
C4	0.42988 (14)	0.1913 (3)	0.68387 (12)	0.0213 (4)
C5	0.53042 (15)	0.2133 (3)	0.58650 (12)	0.0242 (4)
C6	0.35972 (15)	0.2595 (4)	0.55118 (12)	0.0256 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02585 (19)	0.0331 (2)	0.02092 (18)	-0.00181 (13)	0.00026 (12)	-0.00010 (12)
01	0.0202 (7)	0.0491 (10)	0.0200 (7)	-0.0022 (7)	0.0045 (6)	0.0003 (7)
02	0.0236 (8)	0.0810 (14)	0.0206 (8)	-0.0096 (9)	-0.0013 (6)	-0.0031 (8)
03	0.0228 (8)	0.0586 (12)	0.0171 (7)	-0.0006 (7)	0.0034 (6)	-0.0039 (7)
O4	0.0259 (8)	0.0444 (10)	0.0171 (7)	0.0045 (7)	0.0052 (6)	0.0065 (6)
05	0.0188 (8)	0.0717 (13)	0.0231 (8)	0.0025 (8)	0.0048 (6)	0.0027 (8)
06	0.0200 (8)	0.0872 (16)	0.0216 (8)	0.0053 (8)	-0.0016 (6)	0.0065 (9)
07	0.0311 (8)	0.0352 (9)	0.0231 (8)	-0.0038 (7)	-0.0002 (6)	0.0045 (7)
08	0.0258 (8)	0.0480 (11)	0.0378 (9)	-0.0018 (8)	0.0038 (7)	-0.0163 (8)
09	0.0293 (8)	0.0351 (9)	0.0322 (9)	-0.0057 (7)	-0.0047 (7)	0.0081 (7)
O10	0.0248 (8)	0.0321 (9)	0.0267 (8)	0.0017 (7)	-0.0021 (6)	-0.0028 (7)
011	0.0227 (8)	0.0769 (14)	0.0206 (8)	0.0017 (9)	-0.0007 (6)	0.0016 (8)
O1W	0.0266 (8)	0.0496 (11)	0.0224 (8)	0.0031 (7)	0.0031 (6)	-0.0009(7)
O2W	0.0244 (8)	0.0484 (11)	0.0289 (8)	0.0003 (8)	0.0034 (6)	-0.0008 (7)
N1	0.0170 (8)	0.0287 (9)	0.0156 (8)	-0.0003 (7)	0.0019 (6)	-0.0002 (7)
N2	0.0206 (9)	0.0389 (11)	0.0146 (8)	-0.0012 (8)	0.0026 (7)	-0.0025 (8)
N3	0.0160 (8)	0.0514 (13)	0.0187 (9)	-0.0008 (8)	0.0031 (7)	-0.0031 (8)
N4	0.0160 (8)	0.0397 (11)	0.0186 (8)	0.0010 (8)	0.0042 (7)	0.0019 (8)
N5	0.0192 (8)	0.0322 (10)	0.0180 (8)	0.0016 (7)	0.0018 (6)	0.0010 (7)
N6	0.0204 (9)	0.0475 (12)	0.0146 (8)	0.0008 (8)	0.0029 (7)	0.0006 (8)
C1	0.0199 (9)	0.0238 (11)	0.0182 (9)	0.0004 (8)	0.0015 (7)	0.0007 (8)
C2	0.0236 (10)	0.0370 (12)	0.0183 (10)	-0.0012 (9)	0.0012 (8)	0.0009 (9)
C3	0.0207 (10)	0.0275 (11)	0.0175 (9)	0.0004 (8)	0.0010 (7)	-0.0008 (8)
C4	0.0198 (10)	0.0242 (11)	0.0199 (10)	0.0007 (8)	0.0021 (8)	-0.0005 (8)
C5	0.0187 (9)	0.0338 (12)	0.0198 (10)	0.0002 (8)	0.0022 (8)	0.0001 (8)
C6	0.0191 (9)	0.0386 (12)	0.0189 (10)	0.0008 (9)	0.0015 (8)	-0.0010 (9)

Geometric parameters (Å, °)

Fe1—O9	2.1495 (17)	O1W—H1WA	0.837 (10)
Fe1—O8	2.1671 (17)	O2W—H2WA	0.844 (10)
Fe1—O10	2.1973 (16)	O2W—H2WB	0.849 (10)

Fe1—O11	2.2109 (16)	N1—C3	1.350 (3)
Fe1—O7	2.2303 (17)	N1—C1	1.359 (3)
Fe1—N1	2.2549 (16)	N2—C2	1.363 (3)
O1—C1	1.234 (3)	N2—C1	1.397 (3)
O2—C2	1.226 (3)	N2—H2	0.851 (10)
O3—C3	1.237 (3)	N3—C2	1.362 (3)
O4—C4	1.244 (2)	N3—C3	1.385 (3)
O5—C5	1.235 (3)	N3—H3	0.851 (10)
O6—C6	1.228 (3)	N4—C6	1.358 (3)
O7—H7B	0.839 (10)	N4—C4	1.391 (3)
O7—H7A	0.841 (9)	N4—H4	0.853 (10)
O8—H8A	0.827 (9)	N5—C4	1.345 (3)
O8—H8B	0.829 (10)	N5—C5	1.355 (3)
О9—Н9В	0.833 (10)	N6—C6	1.352 (3)
О9—Н9А	0.843 (10)	N6—C5	1.387 (3)
O10—H10A	0.842 (10)	N6—H6	0.860 (10)
O10—H10B	0.841 (9)	C3—O3	1.237 (3)
O11—H11A	0.835 (10)	C4—O4	1.244 (2)
O11—H11B	0.835 (10)	C6—O6	1.228 (3)
O1W—H1WB	0.838 (9)		
09—Fe1—08	93.99 (8)	C1—N1—Fe1	122.52 (14)
O9—Fe1—O10	90.40 (7)	C2—N2—C1	123.87 (18)
O8—Fe1—O10	168.93 (6)	C2—N2—H2	116.6 (18)
O9—Fe1—O11	84.41 (7)	C1—N2—H2	119.4 (18)
O8—Fe1—O11	85.87 (7)	C2—N3—C3	124.30 (19)
O10—Fe1—O11	84.46 (7)	С2—N3—H3	118.8 (19)
O9—Fe1—O7	172.46 (6)	С3—N3—H3	116.9 (19)
O8—Fe1—O7	89.41 (7)	C6—N4—C4	122.80 (19)
O10—Fe1—O7	85.09 (7)	C6—N4—H4	118.9 (18)
O11—Fe1—O7	89.12 (7)	C4—N4—H4	118.0 (18)
O9—Fe1—O7	172.46 (6)	C4—N5—C5	119.60 (18)
08—Fe1—07	89.41 (7)	C6—N6—C5	123.98 (18)
O10—Fe1—O7	85.09 (7)	С6—N6—H6	123.2 (19)
011—Fe1—07	89.12 (7)	С5—N6—H6	112.8 (19)
09—Fe1—N1	94 91 (6)	01 - C1 - N1	122.93 (19)
O8—Fe1—N1	97 63 (6)	01 - 01 - N2	118 11 (19)
010—Fe1—N1	92.10(6)	N1 - C1 - N2	118 96 (18)
O11—Fe1—N1	176 48 (7)	02-02-N3	122.3 (2)
07—Fe1—N1	91 31 (6)	02 - 02 - N2	122.3(2) 123.7(2)
07—Fe1—N1	91 31 (6)	N_{3} C_{2} N_{2}	123.7(2) 113.95(18)
Fe1-07-H7B	103.8 (18)	03-03-N1	122 67 (18)
Fe1-07-H7A	103.0(10) 122.0(19)	03-03-N1	122.67(18)
H7B-07-H7A	116.2 (14)	$O_3 - C_3 - N_3$	118 01 (19)
Fe1-08-H8A	113.2 (11)	03 - 03 - N3	118 01 (19)
Fe1-O8-H8B	124 (2)	N1 - C3 - N3	110.01 (17)
H8A = 08 = H8B	1190(15)	Ω_{4} C_{4} N_{5}	123 06 (18)
Fe1H9B	115.7 (19)	O4-C4-N5	123.06 (18)
Fe1H94	116.1 (19)	O4-C4-N4	117 18 (10)
H9BH9A	116.6 (14)	O4 - C4 - N4	117 18 (19)

supplementary materials

Fe1—O10—H10A	112.6 (18)	N5-C4-N4	119.76 (18)
Fe1—O10—H10B	112.0 (18)	O5—C5—N5	122.86 (19)
H10A—O10—H10B	115.8 (14)	O5—C5—N6	118.40 (19)
Fe1—O11—H11A	125 (2)	N5—C5—N6	118.74 (19)
Fe1—O11—H11B	117 (2)	O6—C6—N6	123.0 (2)
H11A—O11—H11B	117.4 (15)	O6—C6—N6	123.0 (2)
H1WB—O1W—H1WA	116.8 (14)	O6—C6—N4	121.9 (2)
H2WA—O2W—H2WB	114.9 (14)	O6—C6—N4	121.9 (2)
C3—N1—C1	119.42 (17)	N6—C6—N4	115.12 (19)
C3—N1—Fe1	117.50 (13)		
O9—Fe1—N1—C3	134.41 (15)	C1—N1—C3—O3	-179.6 (2)
O8—Fe1—N1—C3	39.71 (16)	Fe1—N1—C3—O3	-8.0 (3)
O10—Fe1—N1—C3	-135.00 (15)	C1—N1—C3—N3	0.6 (3)
O11—Fe1—N1—C3	-146.9 (11)	Fe1—N1—C3—N3	172.28 (16)
O7—Fe1—N1—C3	-49.86 (15)	C2—N3—C3—O3	175.8 (2)
O7—Fe1—N1—C3	-49.86 (15)	C2—N3—C3—O3	175.8 (2)
O9—Fe1—N1—C1	-54.23 (17)	C2—N3—C3—N1	-4.4 (3)
O8—Fe1—N1—C1	-148.93 (16)	C5—N5—C4—O4	-179.8 (2)
O10—Fe1—N1—C1	36.36 (16)	C5—N5—C4—O4	-179.8 (2)
O11—Fe1—N1—C1	24.5 (13)	C5—N5—C4—N4	0.3 (3)
O7—Fe1—N1—C1	121.50 (16)	C6—N4—C4—O4	-179.6 (2)
O7—Fe1—N1—C1	121.50 (16)	C6—N4—C4—O4	-179.6 (2)
C3—N1—C1—O1	-177.2 (2)	C6—N4—C4—N5	0.3 (3)
Fe1—N1—C1—O1	11.6 (3)	C4—N5—C5—O5	179.6 (2)
C3—N1—C1—N2	2.6 (3)	C4—N5—C5—N6	-0.8 (3)
Fe1—N1—C1—N2	-168.57 (15)	C6—N6—C5—O5	-179.7 (2)
C2—N2—C1—O1	177.2 (2)	C6—N6—C5—N5	0.6 (4)
C2—N2—C1—N1	-2.7 (3)	C5—N6—C6—O6	179.2 (2)
C3—N3—C2—O2	-176.0 (2)	C5—N6—C6—O6	179.2 (2)
C3—N3—C2—N2	4.3 (4)	C5—N6—C6—N4	-0.1 (4)
C1—N2—C2—O2	179.5 (2)	C4—N4—C6—O6	-179.7 (2)
C1—N2—C2—N3	-0.7 (3)	C4—N4—C6—O6	-179.7 (2)
C1—N1—C3—O3	-179.6 (2)	C4—N4—C6—N6	-0.4 (3)
Fe1—N1—C3—O3	-8.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7B···O4 ⁱ	0.839 (10)	1.958 (10)	2.795 (2)	175 (3)
O7—H7A···O2W ⁱⁱ	0.841 (9)	1.905 (11)	2.736 (2)	170 (3)
O8—H8A…O3	0.827 (9)	2.294 (19)	2.904 (2)	131 (2)
O8—H8A···O2 ⁱⁱⁱ	0.827 (9)	2.47 (2)	3.147 (2)	140 (2)
O8—H8B···O2W ^{iv}	0.829 (10)	1.962 (11)	2.788 (2)	174 (3)
O9—H9B···O1W ^v	0.833 (10)	1.946 (14)	2.743 (2)	160 (2)
O9—H9A…N5 ⁱⁱⁱ	0.843 (10)	2.018 (11)	2.858 (2)	174 (3)
O10—H10A···N5 ⁱ	0.842 (10)	2.058 (11)	2.895 (2)	172 (2)
O10—H10B…O1W ^{vi}	0.841 (9)	1.927 (13)	2.743 (2)	163 (2)

O11—H11A···O5 ^{vi}	0.835 (10)	2.079 (19)	2.828 (2)	149 (3)
O11—H11B···O2 ^{vii}	0.835 (10)	1.949 (14)	2.761 (2)	164 (3)
O1W—H1WB···O10 ⁱ	0.838 (9)	2.179 (17)	2.926 (2)	148 (3)
O1W—H1WB····O9 ⁱ	0.838 (9)	2.54 (3)	3.075 (3)	123 (3)
O1W—H1WB···O1 ⁱ	0.838 (9)	2.60 (2)	3.142 (2)	124 (2)
O1W—H1WA···O6 ^{viii}	0.837 (10)	1.916 (12)	2.736 (2)	166 (3)
O2W—H2WA···O6	0.844 (10)	1.892 (10)	2.734 (2)	176 (3)
O2W—H2WB···O7	0.849 (10)	2.053 (13)	2.859 (2)	158 (3)
N3—H3…O4	0.851 (10)	1.947 (11)	2.790 (2)	170 (3)
N4—H4…O3	0.853 (10)	1.979 (11)	2.829 (2)	174 (3)
N6—H6…O1 ^{ix}	0.860 (10)	1.979 (11)	2.834 (2)	173 (3)

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) -x, -y+1, -z+1; (iii) -x+1/2, y-1/2, -z+3/2; (iv) -x, -y, -z+1; (v) x-1, y-1, z; (vi) x-1, y, z; (vii) x-1/2, -y+1/2, z-1/2; (viii) -x+1, -y+1, -z+1; (ix) x+1/2, -y+1/2, z-1/2.

